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SPHERICAL GRAVITATIONAL WAVES

By W. B. BONNOR, Pu.D.
Queen Elizabeth College (University of London), Campden Hill Road, London, W.8

(Communicated by L. Rosenhead, F.R.S.—Recewved 12 March 1958—Revised 4 July 1958)
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The field of gravitational radiation emitted from two moving particles is investigated by means of
general relativity. A method of approximation is used, and in the linear approximation retarded
potentials corresponding to spherical gravitational waves are introduced. As is already known, the
theory in this approximation predicts that energy is lost by the system. The field equations in the
second, non-linear, approximation are then considered, and it is shown that the system loses an
amount of gravitational mass precisely equal to the energy carried away by the spherical waves
of the linear approximation. The result is established for a large class of particle motions, but it has
not been possible to determine whether energy is lost in free gravitational motion under no
_external forces.

The main conclusion of this work is that, contrary to opinions frequently expressed, gravitational
radiation has a real physical existence, and in particular, carries energy away from the sources.

/ \

? ” 1. INTRODUGTION

— i It has long been known that the field equations of general relativity,

@)

= Ry =0, (1-1)

= admit, in the linear approximation, solutions which refer to gravitational radiation. This
A radiation seems in many respects similar to that of electromagnetism; in particular, it is

— y resp g ;Inp

transmitted with the speed of light, carries energy away from the source, and at great
distance r exerts a force proportional to 7~!. According to the approximate theory, waves
should be emitted during the motion of bodies in a gravitational field whether this motion
takes place freely, or under the action of non-gravitational forces. The rate of loss of energy
for the motions of astronomical bodies can be estimated, and for stars and planets this
turns out to be below the present limit of detection (Landau & Lifshitz 1951).
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234 W. B. BONNOR ON

In the early history of general relativity these results were accepted at their face value,
though no doubt it was recognized that owing to the non-linearity of (1-1), there must be
certain reservations about conclusions drawn from the linear approximation. In 1938 a
method of approximation was given by Einstein, Infeld & Hoffmann (E.I. & H.) which
dealt successfully with the non-linearity and enabled the equations of free gravitational
motion of particles to be obtained up to, in principle, any approximation. In the method
of E.I. & H., and in the later refinements of it, there is no sign of loss of energy due to
gravitational radiation. :

This result tended to cast doubt on the physical reality of gravitational waves—though
strictly it applied only to free gravitational motion, not to all motion. In the light of the
work of E. I. & H. it was easy to point to flaws in the linear theory which predicts radiation:
apart from the neglect of the non-linear terms in (1-1), one may object to the energy pseudo
tensor, used to calculate the rate of loss of energy, on the grounds that it has no covariant
meaning.

The controversy would be settled by the discovery of a suitable exact solution of (1-1).
A number of exact wave-like solutions are known, and these add a certain plausibility to
the physical existence of gravitational waves (Einstein & Rosen 1937; Takeno 1956;
Bonnor 1957; Bondi 1957; Weber & Wheeler 1957). However, they do not settle the ques-

~ tion because none of them makes it clear what the sources of the waves are. A proper under-
standing of the behaviour of the sources is essential because if the waves carry away energy,
the sources should lose a corresponding amount of mass. ’

In this paper I attack the problem by a method of approximation which is different
from that of E. I. & H. Basically my method consists merely in proceeding from the ordinary
linear approximation to the simpler non-linear ones. In the linear approximation I use
a solution which is a model of two equal particles moving symmetrically in a straight line
under the action of a spring or some other machine. At this stage I insert, as one is entitled
to do, the field of outgoing spherical waves. As is already known, no loss of mass appears in
the first approximation, butif the waves really carry enérgy aloss of mass should appearin the
second approximation. It turns out that there is in the second approximation a loss of gravitational
mass which is precisely equal to the energy carried away by the waves inserted in the linear approximation.

As will be explained in § 12, it has not been possible to determine whether mass is lost
if the particles are moving freely under their own gravitation. The result of E.I. & H.—
that mass is not lost—may well depend on their use of the average of advanced and retarded
potentials. In accordance with the usual physical arguments, the use of retarded potentials
is more realistic for isolated systems, so it seems that a satisfactory solution to the problem of
free motion must await a method of approximation which uses retarded potentials.

Other writings which bear on this work are those of Rosen & Shamir (1957), and of Fock
(1957). Rosen & Shamir consider the first approximation to (1-1) in the same co-ordinate
system as mine, but do not proceed to the non-linear approximations. The work of Fock,
which is as yet known to me only through a short review article (1957), seems to reach
conclusions in some respects similar to mine, though by a different method.

Many of the calculations in this work are long and tedious, and as far as possible these are
relegated to Appendices. The plan of the paper is as follows. The physical system of interest
is described in §2, and the solution of the wave equation appropriate to it is given in § 3
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SPHERICAL GRAVITATIONAL WAVES 235

(and appendix I); §4 deals with the method of approximation, and §5 with the metric.
After a brief section on notation (§ 6), the solutions of the necessary linear approximations
are given in §7 (and appendices II and III). A discussion preliminary to the non-linear
approximation occurs in § 8, and this includes further consideration of the physical system
under investigation. The longest and most difficult section, §9, gives the solution to the
non-linear approximation; readers not interested in the details may prefer to omit this
section except for the summary in the last paragraph. Sections 10, 11 and 12 examine the
implications of the solution and derive the main results. The paper ends with some remarks
on the method of approximation (§13) and with a Conclusion.

2. THE PHYSICAL SYSTEM

I shall construct an approximate solution for two particles 4, B of equal mass m moving
symmetrically in the straight line 4B about their middle point O (figure 1). For the time
being we may think of distance and time as having their Newtonian meaning.

z .
~ P(zy,2)
A |
! |
r |
§(t; 9 4 :
Y NRE
Z(t) AN I
! S g
x 1B
FI1GureE 1

The notation used is as follows. The origin of co-ordinates is taken as O, and the axis of
z is along BA. The co-ordinates of the particles are therefore

A=(0,0,{(2)), B=(0,0,—(()),

where {(£) is a given function of the time ¢. Let P(x, y, z) be a field-point, fixed relative to the
co-ordinate axes. Write
AP=r, BP=r, OP=rm,
as in figure 1; then
2= x4y (z—)? = r2—20z + {2,
AR, =

We may also give P spherical polar co-ordinates (7,0, ¢), # being the angle AOP and ¢ the
usual azimuthal angle.

The reason why we shall consider two equal particles moving symmetrically is as follows.
If the particles were unequal or the motion unsymmetrical, it would be possible to dis-
tinguish a positive direction along Oz and a right-handed screw could be defined. One
might expect in these circumstances that a component of the wave field would point in the
¢-direction: for example, there might be a component of the gravitational field perpen-
dicular to the plane zOx. Such a component of the electromagnetic field appears in the

30-2
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236 W. B. BONNOR ON

case of an oscillating electric dipole with charges 4-¢. This component would destroy the
axial symmetry of the field, and would complicate the metric which we shall use in § 5.

Having made this choice of symmetry, which reduces to zero the dipole moment of the
particles about the origin, we expect not to find a ‘dipole wave’, i.e. one in which the
potentials at P are proportional to cos §. This expectation is confirmed in § 7.

We do not expect the particles 4 and B to describe the arbitrary motion given by {(¢)
without the application of some external forces. These forces we suppose to be supplied by
some machine, which may be something like the ideal elastic spring of Newtonian theory,
or may be some electrical or other device giving energy to the particles. We do not need to
specify it further, except to require it to have axial symmetry, and symmetry about the
plane z = 0; we also suppose that it is confined within a finite region near the origin. We
shall refer to the machine again in § 8.

3. THE SOLUTION OF THE WAVE EQUATION

As shown in the standard textbooks (Eddington 1924) the linear approximation to
equations (1-1) involves, in a certain co-ordinate system, the ordinary wave equation. This
equation also appears in the co-ordinate system which I shall use, so I give here the solution
of it which will be needed for this problem.

Using the ordinary three-dimensional notation of § 2, a solution of the wave equation

2V o2V d*V 10*V
(RN AN R A

is V= [rl-—(v—*?—rl)%] (3-2)

Here m denotes any quantity associated with the point-source 4 which is moving with
velocity v,, r; has the meaning given to it in §2, and the square brackets mean that the
quantities inside them are to be calculated at time ¢—r;/c. In electromagnetism, if m is
replaced by the charge ¢ of the source, the expression (3-2) represents the scalar potential
of the charge at the field-point P(x,y,z) at time £. I shall take (8.2) as the solution of the
wave equation (3-1) corresponding to our problem, and shall suppose that m refers to the
mass of the particle. o

It is not known at this stage whether the emission of gravitational waves results in a
change in mass of the moving particles, and so one has no idea what function of ¢—r,/c is
to be chosen to represent m in (3-2). The simplest procedure will be to take m as constant
and to allow any change in mass to appear in the form of correction terms in the course of
the approximation method. Accordingly the solution of (3-1) corresponding to the particle
at 4 will be chosen as

0 (31)

. m
[ri—(vie1y)/e]’

where m is the mass, provisionally taken as constant.

The solution (8+3) is not convenient when more than one particle is present. It will be
more suitable to express it as a function of #—r/c, where r = OP, as in § 2. To do this, let us
introduce g by

n= (3-3)

g=r1—1r=("P—2z{+)}—r; (3-4)
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SPHERICAL GRAVITATIONAL WAVES 237
then it is shown in appendix I that
om0 1\"m o (g" )
h=nr E (=) e (), (#9)
where 7, and g are to be taken at time ¢—r/c.
L .
et us write L(t) = af(t), (3-6)

where a is a constant with the dimensions of a length and f(¢) is independent of a and m;
then since {(¢) is a length, f{¢) is dimensionless. If we now suppose that V] in (3-5) can be
expanded in a power series in ¢ we have (appendix I)

V= Ztm g @ F, (1,0, t—c), (3-7)

where F,(r,0,t—r/c) are functions determined in the course of the expansion.

We now consider the system composed of the two equal particles 4 and B moving
symmetrically, and we find that odd powers of a do not appear in the series for the total
potential which we write as

V=2t om 3 @Gyy(r,0,1-1]c). (3-8)
s=1

The G,, may be calculated from (3-5) and the corresponding equation for the second

particle. In the expansion it is necessary to assume that r is greater than the maximum value
of | {|. The values of G, and G, are (appendix I):

3 f 2)”] 3" | .
G, =P [73 T s | T e | (3-9)
3(f‘*)" 204" (SH*
=F [r5 + cr4 T T 2152 T 1086
f 4) ” f4)m ( f4) iv ( f4)iv .
+5, |:14c2r3 e T agey | T 1206 (3-10)

where ' means d/d¢, P, are the Legendre polynomials, and /2 and all its derivatives are to
be calculated -at time ¢—r/c. The function f is the dimensionless function introduced in
(3:6), and 7, it may be repeated, is the radius vector OP, from the origin to the field-point.
The solution of form (3-8), with the first two coefficients given by (3-9) and (3:10) will
be needed in § 7. There, and in the rest of the paper, except where stated, ¢ is taken as 1.

4. THE METHOD OF APPROXIMATION

The system of symmetrically moving masses described in §§ 2 and 3 involves the parameters
m and a®. The solution of (1:1) corresponding to the system will contain these parameters,
and we may suppose that there is a double infinity of solutions obtained by varying them.
Let us assume that the components of the metric tensor g, for this family of solutions can be
expanded in a convergent power series in terms of the parameters m and a?:

© @ (ps)
&= 2 2 mP(a?)s gy, (41)

p=0s=0
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(ps) ' . . . .
where g, involves x, y, z and ¢, but not m or 4% Then if (4-1) is substituted into the field

equations (1-1) we shall obtain zero for the coefficients of powers of m, a? and of products
of these powers.
I shall use this method of expansion in terms of two parameters to obtain an approximate
solution of the field equations (1-1). The first few terms of (4-1) written out in full are
(00) (o1) (02)
Gir = G+ gyt agy+ ...

(10) 20)
+mgy+mgy+ ...

(11) (12)
+ma*g, +mag,+ ...

(21 (22)
+m?atg, +mPatg,+....

(42)

We are supposing that the field depends essentially on the existence of the two masses m
so that if these are absent the space-time will be flat. Hence, all the terms on the right-hand
side of (4-2) (except the first, which refers to flat space-time) must involve m, and so

(0s)
=0 (s> 0). (4'3)

If, on the other hand, @ = 0 we have the field of a particle of mass 2m: hence we may take

(40)
gix = Schwarzschild field of a mass 2m  (p=0).

In supposing this we do not rule out the possibility of a solution in which mass is lost as

radiation energy; terms corresponding to loss of mass may still appear from further stages
in the approximation.

The first stage of the approximation to involve a wave field comes from the third row on

the right of (4-2). This is clear from (3-8), in which the wave-like terms occur in the G,,,

(1s)
that is, in the coefficients of ma%. Thus for g, we shall take expressions like G,,, such as
’ ' ) (1s)
(3-9) and (3:10). (In the co-ordinate system which we shall choose not all the g, satisfy

the wave equation; however, it turns out that(;:, does, and the others can be calculated
in terms of it.)

"The higher terms in (4-2), such as those in the fourth row, are interaction terms resulting
from the lower ones. Of these we shall consider in detail only one—that involving m2a*.
The field equations to be satisfied at these stages involve non-linear terms coming from the
previous approximations, and it is here that the loss of energy by the sources may be
expected to show in the coeflicients of the metric.

5. THE METRIG
It is convenient to use spherical polar co-ordinates so that the metric of flat space-time is
ds? = —dr2—r2df? —r?sin? 0dg? 4 de?,

(00)
and the values of the non-zero g, are

(00) (00) , (00 yigp (OO
gu=—1, go=—1% g=—r’sin’l, g,=1


http://rsta.royalsocietypublishing.org/

JA '\

/ y

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
1~

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

SPHERICAL GRAVITATIONAL WAVES 239

For the reasons given in § 2 we assume that the problem of the symmetrically oscillating
particles is one with complete symmetry about Oz, and that the metric may be written in
the form

ds? = —A4dr?— Br2d0?—Cr?sin? 0dg? + DA+ 2Edrdf+ 2F drdt 4+ 2Gdods,  (5°1)

where 4, B, ..., G are functions of r, § and ¢.

Let us suppose that 4, B, ..., G can be expanded in a power series in terms of a single
parameter A, as follows: :
o (s)

A=1+314, E= 3 XE,
s=1

© ()

B=1+3MB, F— 3 MF,
s=1

© (s)

D=1+ SAD,
s=1

Now carry out the transformation of co-ordinates:

ey
r=r¥+da(r¥, 0%, 1¥),

(1

b = 6* +’l/?)(r*>0*at*)’

> (5‘2)
¢ = ¢*5
(D
L= t*+A0(r*, 0%, t*),
and try to choose the new co-ordinates so that
SIS
g2 =814 =83=0.
One finds then .
) (1 (D (1
g = —ay+E—r*2f, =0, (5-3)
o)) (M () (D
g =—o+F+0, =0, (5-4)
I (M (D (D
&y = —1*,+G+0, =0, (5:5)

where the suffixes 1, 2 and 4 on the right mean differentiation with respect to r*, 6* and #*,
respectively.
The compatibility condition for equations (5-3) and (5-4) is

(1) (1) (1) (1)

r*2f14+0,, = E,—F,. (5°6)

This has to be compatible with (5-5) ; differentiating (5-5) with respect to r* gives

-~

(1) (1 (D )
2r¥f,+1¥2y —0y = G, (6:7)
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Equations (5-6) and (5-7) are compatible if
(1) (1) 1) (1) 1)
2r*2B 4+ 2r*f, = G+ E,— Fy,
. . (1) M
which always has a solution for f. Hence, we can find «, § and § satisfying (5-3) to (5-5) and

thus reduce the first approximation to the metric (5-1) to diagonal form.

(1) (1) 1)
Having eliminated g,,, g;, and g,,, we can proceed in exactly the same way to eliminate

@ (@ @)
12> &14 and g,, by a transformation of the form

(2)
r = 1% 4+ L2a(r*, 0%, %),

----------------------------

Thus provided the metric (5-1) can be expanded in powers of a parameter it can always
be reduced to diagonal form. |

A similar proof applies, of course, if the functions 4, B, ..., G are expansible in terms of
two parameters. Hence, we may assume for the purposes of our problem that the metric
may be reduced to diagonal form, which we take to be

ds? = — Adr?— Br2d@?— Cr?sin? 0 d¢? + D de?. (5-8)

. 6. NoTATION
In developing the successive approximations we shall use the following notation.

The (ps) approximation will mean the coefficient of m#(a?)* in (1-1), and the symbols
sy | . . . . .
g, will denote the coefficient of m#(a?)* in the expansion of g, as in (4-2). Tosave writing

we shall also use the following, which is an extension of the notation of § 5:

© ® (ps) 3
—gy=A4A=1+3 3 mba* 4,
p=1s5=0

© (ps)
p=1s=0

w1 | (6-1)
) @0 S,
—gs3 = Cr2sin?f = r2sin? ﬁl:l + 2 > mba®s C],
p=1s5=0
® 00 (Hs)
gu=D=1+3 3 mta*D.
p=1s=0
As further abbreviations we shall sometimes use, after giving warning,
| (19 (1) (1s) (1s)
A=a, B=f, C=vy, D=4, (6-2)
(22) (22) 22 (22)
A=p, B=v, C=0, D=p. (6-3)

The quantities «, # and ¢ in (6-2) have no connexion with the functions in (5-2) which will
not be needed further.

(6s) . . .
A suffix 1, 2 or 4 after a non-tensorial symbol such as 4, a or z will mean differentiation
with respect to 7, 6 or ¢.
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7. THE LINEAR APPROXIMATIONS
The solutions of the (00) and (10) approximations are

(00) (00) (00) (00)

gu=—1, gop=—1% gs=—1isin?l, g,=1; (7-1)
(10 10 (10 10 i
Gu=—4r"1, gp=0, g33=0, gy=—4r"L (7-2)

These are simply part of the Schwarzschild solution for a particle of mass 2m, to which
the system reduces if ¢ = 0.

Considering now the (1s) approximation (s>0), we notice that, since all the terms
(0s) . .
g (s>0) are zero (see (4-3)), itis not possible to make up expressions containing ma?* from

lower approximations. Hence, the (1s) approximation consists of linear differential equa-

(1s) .
tions, homogeneous in the sense that every term in it contains one of the g, or one of their

derivatives.
In the notation of (6-2), the equations of the (1s) approximation are (appendix II):

Ry =3§ma®[ By, + 1+ 01+ 2B +y,—ay) +17 % (agy+aycotf) —ay] = O, (7-3)
Roy=§ma®r?[ 1 +r1(8f, —ay+y,+8,) +17 220 — 20) — 4
+772(tgp + Y20+ 09y — By cOt 0+ 2y, cotd)] = 0, (7-4)

Ryy=3ma*r?sin? 0y, +r1(3y, —a;+f1+8)) +772(20 —2a) —y4y
+17 2y +r72cotb(2y,—fo+ay+08,)] = 0, (7-5)

Ry =ima®[oy+fuy+V4— 01 —2r7 10, —r72(0yy+ 05 cot )] = 0, (7-6)
Ry =3ma*[y15-+012+ (11 —f1) cot0—r~(ay+d5)] = 0, (77)
Ry =4ma®[ By +71a+77 (B +74—20)] = O, (7-8)
Ryy=3ma*[0yy+ 754 +cotl (y,—f4)] = 0. (7:9)

Equations (7-3) to (7-9) are equivalent to the set calculated by Rosen & Shamir (1957),
who considered the linear approximation to (1-1) in the same co-ordinate system as that
used here.

None of the equations (7-3) to (7-9) is a wave equation as it stands. However, it is shown
in appendix ITI how one can derive the equation

g+ 2r Yoy + 172 (g oty cOL ) —ay, = f(vu—l—r“lvl) df—w,—rlw—u;—r~lu, (7-10)

where u(r,8), v(r,0) and w(r, ) are functions of integration. The functions f, y and & are
determined in terms of « and certain functions of integration (appendix IIT), and since a
formal Kirchhoff solution of (7:10) can be written down, the complete solution of equations
(7-3) to (7-9) may be given, as in appendix III.

Equation (7-10) shows that if the functions of integration u, » and w are put equal to zero,
« satisfies the wave equation in spherical polar co-ordinates. In accordance with the argu-
ment in §§ 3 and 4 we seek now solutions of the (1s) approximations corresponding to the
wave field of two symmetrically moving particles. As a basis for such solutions we may use

31 Vor. 251. A.
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for « expressions such as G, and G, in (3+9) and (3-10), both of which satisfy the wave equa-
tion. In analogy with electromagnetism I shall call the solution derived from G, the
quadrupole wave solution.

With appropriate choice of functions of integration the quadrupole wave solution may
be taken as (appendix III)

A= 4 () PR () 8 ) 8,

(11)

B= (7 a2~ [ s
+P2[——%r”1 fz)”+4r“3f2+4r“1f r‘3f2dr],

11

C=—4 () 42/ — 24 [ rpdy : (7-11)
+ P, &r1(f2)" 182 f2) _}_20,.—?.][2_,_4_7-1[ ‘?jfzdr]

A
o=
—
S

=4 ) — s aer [ vy

— B3 () Ry s [ ]
The function fis to be calculated throughout at time ¢—7, and * means differentiation with
respect to this argument.

As will be explained later we shall use only those terms in (7-11) which are of order 71

for large r. These are
(

—

1)

A= rlhcos?8,
“1;’) 1r-1hsin2 6
= —24r-1hsin2 4, ,

an : [ (7-12)

C= Yrlhsin?,

an

D= rlhcos?d,

92

where h= —4m§{[f(t—r)]2}. (7-13)

The solution of the (12) approximation is given by an expression similar to (7-11), but
more complicated and containing terms in P,(cos#). It is not necessary to give this here as
only terms in 7~! will be required. These are (appendix IIT)

(1

N
~

\

A= rlkcos*d,

(lé) -1} in2 @ 2 2

(mz—r sin? §(1 —2Zsin 0),> (7-14)
C= rksin?0(1—%§sin%6),

(12)

D= rlkcostd, )

where | PR P T (715)
40¢4 ' )
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It was pointed out in § 2 that the symmetry of our problem would be expected to exclude
any dipole wave. We shall now verify that this is so. The dipole wave solution of the wave

equation is proportional to .
a = (r"if"+r72f) cos 4. (7-16)

Since this makes the left-hand side of (7-:10) zero we must have
j(v“%_rl”l) df —w, —r~lw—u;—r"lu = 0,

which is a relation between three of the functions of integration. Itisshown in appendix III
that
y = —a+ cosec? 0ﬂ:sin d cosd (2a+2r‘1 foadH—r‘l frudr—}—r‘ld)] dé

—|—coseczé’{fvsin2¢9d0—[—q}, (7-17)

where d(0, t) and ¢(r, ¢) are further functions of integration. Inserting (7.16) into (7.17) and
- carrying out some of the integrations, we have

y = —a—%cot?d cosd r~1f’ +coscc:26’fvsin2¢9d¢9 + g cosec?d
+cosec? 0”:sin 0 cos (r‘l fru dr+r‘1d)] dé,

so that y will be singular along the z-axis unless we can wipe out the term
—%cot?0 cos 0 r-1f’ (7-18)

by appropriate choices of the functions of integration. Since f” is a function of t—r, d(, £)
is useless for this purpose. (We exclude functions f which are polynomials in #—7.) More-
over, « and v are not functions of , so (7-18) can be wiped out only by the use of the function
q(r,t). If, however, we were to choose

q = const. X r~If",

there would still be left a singularity in y at either § = 0 or § = m, or both.
Hence, it is not possible to choose the arbitrary functions so that y is non-singular along
the z-axis, and we conclude that there is no dipole wave for the metric given by (5-8).

8. PRELIMINARIES TO THE (22) APPROXIMATION

As stated in the Introduction, the aim of this paper is to find whether the energy which
seems to be transmitted by gravitational waves is represented as a loss of gravitational mass,
or as some other permanent change in the sources. A simple experiment to study this
question would be the following. The two particles 4 and B of § 2 are at rest at the ends of
a compressed spring until a certain time #, when a time switch operates to release the spring.
The particles then oscillate sinusoidally until time #;, when they are secured in their original
position by some mechanism also operated by the switch. Between times #, and ¢, energy
has presumably been lost as gravitational radiation. Is the static system after #; different
from that before #,?

31-2


http://rsta.royalsocietypublishing.org/

L

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

244 W. B. BONNOR ON

One may, of course, point out that the system is not strictly static before £, because there
must be motion in the mechanism operating the switch. Until we have some knowledge of
the type of solutions offered by the field equations to this problem, we cannot know whether
this objection is valid or not. For the present, the best procedure seems to be to ignore
subtleties of this sort, and to assume that the field equations take no account of them.

From the mathematical point of view we must note that, although we may assume before
f, a static metric with axial symmetry, the metric after ¢, will not be static because the gravi-
tational waves will still be present somewhere in space. However, we should expect to
obtain an answer to our question by examining the metric for space-time when ¢ is very
large, so that the waves are a long way off.

One difficulty in finding a solution to the problem in this form is that of satisfying boundary
conditions at ¢ = £, and ¢ = ¢,. Whilst the system is oscillating one can start the solution by
taking a retarded potential such as (3-8). Then on the null surface ¢{—r = ¢, one must
match the solution to a static metric with axial symmetry, the conditions of matching being
those given by O’Brien & Synge (1952), or by Lichnerowicz (1955). On the surface
t—r = ¢, certain continuity conditions will need to be satisfied, though at this limit it may
not be possible to match the solution to a static metric. The approximation method of this
paper is not very suitable for dealing with these boundary-value problems, and it is prefer-
able to circumvent them by a different approach.

We shall therefore choose for f{¢) a bounded function which has derivatives of all orders
for —oo<¢<<co. Examples are

S(t) =2+tanhwt (0>0), (8-1)
and S =1+(1+8)"L (8-2)
In the former case the particle 4 would start at ¢ = —o0 from a distance + 1 from the origin

and finish at ¢ = 400 at a distance + 3 from the origin. Particle B would undergo a sym-
metrical motion on the negative z-axis. The motion (8.2) is similar, but the particles return
to their starting points. With such functions the problem of boundary conditions does not
arise.

If the emission of waves is accompanied by a loss of gravitational mass, the coefficient
of 1/r in the g, at ¢ = +o0 should be different from that at ¢ = —oo. Since functions f{¢) of
the type described have all their derivatives zero at ¢ = 400, it is easy to see from the form

of the(z,; that no such difference appears in the (1s) approximation. A difference does
appear, however, in the (22) approximation, and it will be the object of the remaining
sections to show this.

Since our main concern will be to find the difference in the g, at the times ¢ = 400, we
shall in the (22) approximation, dealt with in the next section, persistently disregard terms
which tend to zero both when ¢—+-00 and when ¢——o00. We shall also neglect terms which
are of order (1/r)? or higher as {—4-0o0, whether or not these tend to zero as ¢—--0o0. This is
because the terms which represent loss of gravitational mass will be of order 1/r as {—4-c0.
By this means we shall obtain a solution which is valid for

0<r<|t],
or rather more precisely, valid as {—+-00, and for » which is less than |¢| but still great
enough for (1/r)2 to be negligible compared with 1/7.
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We shall not need to choose a definite function f{#), though it may be helpful in §§9
and 10 to keep in mind the examples (8-1) and (8-2). The precise restrictions which we
place on f(¢) are:

(1) f(¢) is single-valued and possesses derivatives of all orders for —oo <¢<o0;

(ii) f(¢) tends to limits as ¢ —--00;

(iii) the derivatives of [ f(¢)]? tend to zero as ¢—--00 at least as rapidly as 1.

In § 9 we shall meet the expression

X(&) =1[F (£)1*+3h(6) H"(€),

where 4 is the function given in (7-13). From (i) and (iii) it follows that 4(£) and X(£), and
all their derivatives, exist for —oo <{<0o, that (§) and its derivatives tend to zero at least
as rapidly as {1 as {00, and that X(£) and its derivatives tend to zero at least as rapidly
as £2 as {—>+o0.

9. THE (22) APPROXIMATION
- Let us write the (22) approximation in the form

0, (T) = WG g 20 (9-1)

(22)
The left-hand side is linear in the g, and their derivatives. The right-hand side contains

terms of two types:
an
(i) products of the g, and their derivatives;

(ii) products ofs 2; (and their derivatives) with( 1g2:k (and their derivatives).
All terms on the right-hand side are known from previous approximations.

The full equations (9-1) may be calculated as described in appendix II. If we introduce
the notation of (6.3), they may be written

vt oyt pn 2 (v oy — i)+ (g Hppcotl) —py, =P (9-2)
vy 77 (Bv =y oy py) + 1720 —20) — vy
+772(flgg 4 099+ poy — V5 cOt 420, cot ) = Q, (9-3)
o1+ (80— v ) Hr7H(20—2p) — 04y +77 20y,
+7r72cot0(20,—vy+ s+ py) = R, (9-4)
HasHVagt 44— P11 — 27 py —772(pyy + p, cOL ) =5, (9-5)
T12+p1p+ (01—vy) cotd —r~ (s, +p,) =L, (9-6)
Vgt O+ (v o —24) =M, (9-7)
Uoy+ 0oy +cOtl(a,—v,) ' =N, (9-8)

where P, Q, R, S, L, M, N stand for the expressions ¥,,, in (9-1). It will be noted that the
left-hand sides of these equations are formally similar to the left-hand sides of the equations
of the (1s) approximation, (7-3) to (7-9).

We can achieve a formal integration of equations (9-2) to (9-8) by the method given in
appendix ITI. First, (9-8) is integrated with respect to the time and then substituted into
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(9-6) to find p,. This, and the integral of (9-7) are then substituted into (9-2). The result
is an inhomogeneous wave equation for x:

Op = gy + 20~y +172(fhgg + o COLO) —piyy
- P—~f(L1+r-1L) dﬁ—f(Ml—i—r‘lM) dt+ﬂf(N“+r1Nl) dt} a6

+ f (vyy+7710y) O — (»y ‘H*iu) — (wy +7"'w), (9-9)

where u(r, 0), v(r, 0) and w(r, t) are functions of integration. The integration process leading
to (9+9) gives intermediate stages from which ¢, » and p may be written down in terms of
integrals of 4, P, @, R, S, L, M, N and various functions of integration (appendix III,
equations (III. 6), (ITI. 7) and (III. 4)).

The key to the whole solution is the value of z given by (9-9). Itis clear that this value is
indeterminate to the extent of a solution of the homogeneous wave equation

Ou = 0.
In the following we shall take the view that the essential sources of the wave field have
already been inserted in the solutions chosen for the (ls) approximations, and that no
further source functions are to be used other than those necessary to satisfy the inhomo-
geneous equation (9-9).

an
The work needed to calculate P, @, etc., from the full expressions for g, (given by (7-11))

(12)
and for g, is quite prohibitive, so we are driven to look for a method of finding the leading

terms in g, v, ¢ and p without doing the full computation. As explained in §8 we are
interested in the difference in the metric at # = +oo from that at ¢ = —o0, and, in particular,
we wish to find the differences in the terms in 7~! which might correspond to a loss of
gravitational mass. ‘

If we were to work out the right-hand side of (9-9) using the complete expressions for

an  a» _
gy and g, we should obtain

Ou= 3 7 pL(t=), 01+ + [ (w1 +7710)) d0— G r-10) = (wy +51u),  (9+10)
n=2 )

(n)
where p would be known functions, and J would be a known expression involving integrals

a2
such as occur in (7-11), and occur also in the corresponding formulae for the g;. Remem-

bering that we are interested only in the coefficient of 1/r in g, it is fairly obvious at once that
we may ignore J. To justify this, we notice that for a typical integral term in (7-11) we have,
since 2 is bounded (say, f2< K, where K is a positive constant)

—lf r-3f2dr f r-3dr

All the integrals in (7-11) satisfy a similar inequality, and integral terms which arise in

( 12) 3 . . .
gy, are less than Kr=5. Owing to the type of quadratic product which occursin ¥, it follows

that terms in J must be of order (1/r)%, or of higher order in 1/r. They may therefore be
expected to induce terms in g of order (1/7)2 or higher, and not to affect the 1/r term. We
shall therefore neglect J in what follows. :

<Kr! <Kr-3. (9-11)
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(n)
Let us consider the contribution to # necessitated by a term 7 "p on the right of (9-10).
For n>>4 we assume that there will be no contribution to the 1/r term in g, in which we are

(2)
interested. We shall deal later with the term 7=2p. For the present we shall try to construct
a solution of (3) ' :
v Op =r3p. (9-12)
(3)
Now p[(¢—r1), 0] will consist of a series of members each of which is a product of a function

of t—r with a function of ¢, say
3 @) @)

p=3l(t=1)s(0).

We shall take one of these members and solve the equation
(@) ()

Ou=r"3s. (9-13)
It is easily verified that
@)
p=1r"10O(0) (9-14)
is a solution of (9-13) provided that
@)
Oy + 0, cotld =s. (9-15)
@
Now s will have the form
@
s = kysin* 0+ kysin? 0+ £, (9-16)

where £, k, and k5 are known constants, and it will not in general be possible to find a func-
tion @ which satisfies (9-15) and is non-singular for 0 <O <.

The difficulty can be overcome by using the arbitrary function w which occurs in (9-10).
If we choose w so that

@
wy+r~lw = Kir3, (9-17)

where K is a constant, (9-13) becomes
(#) (1)

Op=r3(s—K),
and using again the form (9-14) for g, (9-15) becomes
62]
0, +0,cotl = s—K. (9-18)

’ @
It is always possible to choose K so that this equation has a non-singular solution if s has
the form (9-16). '

By this method we obtain a satisfactory solution of (9-13), and by repeating this process
@) (@)
for each of the products / s we can build up a solution of (9-12).

(2)
We now investigate the contribution to 4 from the term 7~2p in the series on the right of
(3) (2)

(9:10). As was the case with 7=3p, so is r=2p a sum of products of functions:
@ @) @)
p=2n(t—r)c(0); ' (9-19)
and as before, the solution of . @
Cp =% (9-20)
can be built up from solutions of G) )

o Ou=r"2nec. (9-21)
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Let us in (9-21) substitute
—7 (4)

p=pr =it [ () dg;
the result is

0] i) —7 (i
Op* = 3 3(‘622+‘c2cow)1nrf n(E) dE— 330 f ' %)(g) d. (9-22)

Next, write @ - @) t—r 9 (z)
u¥ = pk* L (c22+cgcot6’ lnrf d?]f £) dg,

and substitute this into (9-22). It is found that w** has to satisfy

@ @ i—r
Ou** = —%r“‘lnrl:(czz%—cz cotl?)22 +cot 0(w22+ c2c0t6)2+2 €yt 02 cotd ]f d?]f g) d¢

® @ @ i) ) D\ fi—r ()
—l—%r—4(022-|- c2cott9f df]f” n(E) dE+3r- ((c2z+(c2cot0——(c)f n(E)dg.  (9-23)

The first two terms on the right are of order »~* and we assume that they give no con-
tribution of order 7~! in 4**. The contribution to #** from the last term on the right, which
is of order 773, is given by an expression of the form (9-14), which was the solution of (9-13).
Up to order 7~! therefore, the solution of (9-21) for x has the form

@

p=—ptetnr [ dgrrioe [ e e, (9-24)

—00

@

where ¢* is a function of f determined by the procedure which led to (9-18). This analysis
@)

assumes that » may be 1ntegrated twice without introducing singularities; we shall later

check that this assumption is justified. We may use this procedure on each of the terms in
(9-19), thereby obtaining a solution of (9-20).

In this way, using the various contributions of types (9-14) and (9-24) we can build up
the solution of (9-10) for x4 as far as the term in r~!. We do not need to use the arbitrary
functions » and », and may put them equal to zero. To ensure that our solution is non-
singular, the function w may, however, be needed. J

The next step is to consider the actual expression for the right-hand side of (9:10). Let

us take for the((lgs,.),c the approximate expressions given by (7-12) and (7-14), and work out
the right-hand sides of (9-2) to (9-8) using only these, and working only to order 2, We
find (appendix II):
P = r—2Xsin%40,
Q = —8r"%"sin? (1 —%sin?4),
R = 8r7%"sin?0(1 —Zsin%4),
S = r~2Xsin%0, (9-25)
L = —3r=2hh"sin 6 cos 0(1 —9 cos?f) — 1672k’ cos3 f sin 0,
M = —r2Xsin*0,
N = 3r=2hh’ sin 0 cos (1 —9 cos? ) — 1672k’ cos® 6 sin 0,
where ' means 9/0¢, k(t—r) is the function given by (7-15), and
X(t—7) = }(h'2+2hh"). | (9-26)
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The formulae (9-25) have to be substituted into (9-9) so that the latter may be written
in the form (9-10). It is easy to see that if this is done, the right-hand side of (9-10) will be
correct to order 7~2, but not to order 7~3. To achieve accuracy to order % we should have
to calculate P, @, etc., to order r~3. However, in spite of this, it turns out that the approxi-
mation (9-25) is sufficient for our purposes. The reason is as follows. We seek only those
terms in 7~! in # which exhibit a permanent change in the metric, that is, terms which have
different values at ¢ = -+00. Suppose that such a term in g arises from a term in =3 on the

right of (9-10). Now the presence of this term in # means that the function (ll )in (9-14) has
different values at ¢ = oo (r finite); hence the terms in r=3 in (9-10) which interest us are only
those whose coefficients have different values at t = 4-co. It happens that such terms all arise from
the expressions (9-25) and so there is no need to calculate P, @, etc., to r=3.

To prove this last statement, let us study the way in which terms in =3 on the right of
(9-10) arise. They come from P and from the integrated expressions in (9-9). Consider, for
example, the function M, which may be written

7 (n)
M= 3y M*[(t—1), 0] +J*,
n=2

J* being an expression involving integrals the contribution of which to (9-9) we ignore
for reasons previously given. The contribution of M to the right-hand side of (9-9) is

(2) (2) (3
— f (M, +7r-1M) dt = r—2 % +7-3 f M dt4r-3M* +0(r4). (9-27)
o)
Now from (9-25), M* = — Xsin*#, which tends to zero as {—7—>+00; and it is not hard to

3) . .
see that M* also tends to zero as {—r—-+-00 because every term in it contains at least one
derivative of /2 as a factor. Consider, however, the following integral (7 finite):

o  (2) 0
r-3 f §1% dt — —3r-3sint0 f (R2+2hk") d,
_—_~%r‘3sin4t9{[2/z/z’]°fw—- ) /z’2dt},

= $r73sin*d| A'2d¢; (9-28)
this is not zero, because 4’ is not identically zero. Thus of the terms written out on the right
of (9:27), the second will give a permanent change in # but the others will not. The omission

of the term in 73 in M in (9-25) means that ](lsl) * in (9-27) is missing; but this does not matter
because even if we had it, it would not lead to a permanent change in g of order 1/r.

In the same way we can deal with the contributions of the functions P, L and N to (9-9).
In each case one finds that the coefficient of 73 is zero at £ = 400 and at ¢ = —co. Hence,
these contributions will not lead to any permanent change in # (of order 1/r) and may be
ignored. Thus the only term in =3 which interests us is that which comes from A, and which

we take to be i—r
—1-3sint0 f X(£) de.

32 VoL. 251. A.
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@) : v
The coefficient p in (9-10) may be calculated accurately from our expressions (9-25)
and is @)

p = 8k" cos* 4.
This will give a contribution to x of the form (9-24), where
- ()
f pde= [ k() dE=k(t—n), (9-29)

since £'(—o0) = 0. From the expression for £ in (7-15) we see that (9-29) has the same value
(i.e. zero) at ¢ =400 (r finite), so that the contribution to x# from (9-24) represents no
permanent change in the metric. This too we may therefore ignore. We easily verify that

[“an[" ey ae

is not singular, thus vindicating the hypothesis used in deriving (9-24).

In obtaining the partial solution (9-24) of (9-21) we invoked a procedure, described
earlier in this section, which makes use of the function of integration w. This was when we
obtained the last term on the right of (9-24) from the last term on the right of (9-23). In

@

order that the function ¢* shall not be singular it is necessary to choose w to satisfy
=7 (@)

wy+rtw = K2 n(g) dgs

— 00

(see (9-17)). From this we find, ignoring a function of integration which leads to terms of

no interest
w=r[ y2ap[ e e

The function w enters the expression for p (appendix III, equation (III.4)), giving a

contribution t—y (z)
o[ e[ arean [ nig) de. (930)

Performing two partial integrations, and bearing in mind (9-29), it is not difficult to show
that (9-30) yields an expression which is of order =2 and therefore of no interest to us here.
We are at last in a position to derive the solution for #. The equation to be solved is

= —r9sintd | :X(g) dé. (9-31)

From the long argument above it should be clear that this will give all the terms in g, of
order 7!, which show permanent change. Equation (9-31) has the form of (9-13) and the
solution, given by (9-14) is

~ ) [ x@) d, (9-32)

where 0 has to satisfy an equation of type (9-18), namely
Oy, + 0Oy cotf = —sin*f— K,
K being an arbitrary constant, to be chosen so that @ is non-singular for 0<<f<m. It is

found that we must take K—
= 1 59

in which case 0O = gy ++& sin2 0+ 545 sin* 6, (9-33)

where a, is an arbitrary constant.
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As previously explained, the introduction of this value of K requires that the function
w satisfy t—r
wi+rtw=—Fr 3 X(§)dE,

of which the solution may be taken as
r -
w=—r [ 1-2an[ X (934

Thus the required solution up to r~! in g, retaining only those terms which differ at
¢ =400, is (9-32) with O given by (9-33); the choice of this solution requires that we give

to w the value (9-34). ,
(22)
We have still to find the remaining g;,, which are given by equations (III. 5), (III. 6)

and (III.7) of appendix ITI. To use these we insert the value of  and of w, and putu = v = 0.
It is found that the expressions L and N which occur do not add any terms of order ~! which

(2)
show permanent change. M does produce such a term, but this arises only from AM* given
by (9-25). The complete solution of the (22) approximation up to terms in ~! which repre-
sent a permanent change in the metric is thus found to be

(22)

0 = V(4 sin? 0-+ksin0) [ X(E) dE, (935
H“ 015 .

t—r
p — B — r1(Z sin 0 4 g sin* 0) f X(E) d

r1(ag+Esin? 0—Esint 0) f "pidy f X A, (9-36)
t—r ' )
7 =C =\ (Fysin? 0+ Fysint0) [ X(€)aE

7Yy 7k sin?  — gy sin ) f " pidy f TXEE (937)

(22)

p— D — —1(ay-+ sin? 6+ g sin* 0) f T2 X(t—£) dE 4 f "rw(nf)dg. (9-38)

In these, X is given by (9-26) and w by (9-34); a, is an arbitrary constant. These satisfy the
equations of the (22) approximation, (9-2) to (9-8), in the following sense:
(1) all terms of order 7! vanish on both sides;

(ii) equations (9-2), (9-5) and (9-7) are satisfied up to order r~2;

(iii) equations (9-3), (9-4), (9-6) and (9-8) are satisfied up to order =2 except for the
terms in Q, R, L and N in (9-25), which do not give rise to a permanent change in the
metric; '

(iv) all integral expressions disappear when (9-35) to (9-38) are substituted into the
left-hand sides of (9-2) to (9-8).

The discrepancy (iii) is simply a consequence of our persistent neglect of terms which led
to no permanent change in 4, v, ¢ and p, and it may be rectified if appropriate terms are-
retained during the process of solution. The additions to g, v, ¢ and p which thereby result
are of no interest to us here. The point of (iv) is that the integrals in (9-35) to (9-38) have
different values at ¢ = 4+-00, whereas the right-hand sides of (9-2) to (9-8) certainly do not
(up to the order considered). Itis, therefore, necessary to verify that the integrals disappear
on substitution into the field equations.

32-2
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During the course of verifying that the solution satisfies the field equations in the sense
described above, it is necessary to differentiate the double integrals in (9-36) and (9-37)
with respect to ¢, through the sign of integration. This is justified because the integrals are
uniformly convergent for all finite values of ¢ provided that r> 0 (see also next section).

It may be as well to summarize briefly this long and complicated procedure for deriving
the solution (9-35) to (9-38) of the (22) approximation. From the field equations (9-2) to

(9-8) we deduced the inhomogeneous wave equation (9-9) for (==(¢242)), which is the key to
the solution. Our procedure then was to pick out terms on the right of (9-9) which led to
contributions to # which (a) were of order !, and () had different values at ¢ = 4-c0.
All other contributions to x were neglected. Once these terms were discovered, there was
little difficulty in finding their contributions to x: the only subtlety was that to avoid
singularities in the angular part of such contributions it was necessary to use the function

(22)
of integration w(r,¢). In this way we arrived at the expression (9-35) for A. The remaining

(22) (22 (22)
coefficients B, C and D of the (22) approximation are given in terms of z and other known

expressions by equations in appendix ITI, and in working these out, we retained only those
terms which are of order »~! and which have different values at ¢ = +c0.

10. EXAMINATION OF THE SOLUTION OF THE (22) APPROXIMATION

We shall now examine the solution (9-35) to (9-38), con31der1ng in the first place the
integral occurring in (9-35). From (9-26) we have

i~ i—r
[ xteydg = ez — [ e (101)
recalling the properties of 2 assumed at the end of § 8, we see that the integral on the left

exists for all ¢ and 7, and that

[" x@a——1] weag

Let us consider now another integral occurring in (9-36) and (9:37)

[mran [ xe e (102

It is not hard to see that, if # is finite and 7> 0, this integral exists because for sufficiently
large 7, -

7t X(E)dE~p?

—00

we have used here the assumption about X made at the end of § 8. In fact, for any finite
range of £, the integral (10-2) is uniformly convergent, which justifies differentiation through
the sign of integration, used in verifying the solution.

It turns out, however, that (10-2) tends to infinity at ¢{—>--0o0. This may be proved
rigorously, or may be seen in a qualitative way by noting that

31
f X(€) dE ~const. if £,>E,
or ~0 if & <f,
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where ¢’ and £” are certain constants (§'>£"). (For purposes of illustration one may think
of X(£) as of the form (14§2)" (n>1).) The effect of this for large ¢ is to give (10-2) the
approximate value ,
const. xf n~ldy

=
which tends to infinity as £—--c0.

Since we are particularly interested in the solution when ¢#—4-00, this defect, unless it
can be removed, completely vitiates the solution. On calculating the components of the Riemann—
Christoffel tensor one finds, however, that integrals of the form (10-2) are absent. This suggests that
the singularity has no physical significance, and in fact it can be removed by the trans-
formation

r = r¥4m2a*[ (& —3a,) — 5 sin? 0% — 5 sint 6*] ]r n‘ldn‘r ! X(&)d¢

+m?at[f5 —%sin? 0% — s sint %] r* f n~2dy f X(&) dé,

{*—

0 = 0% —m2a*(& + g Sin2 0%) sin 0% cos 0% f Tprdp | T x©dE | 103)

—m?a*(E + 75 sin? %) sin 0* cos 0*r* - lf ﬂ_ld?]f §) dg,
¢ = ¢*>
=t tmiat(s—ta) [ dy [' g X —g)de.

This has no effect on the (00), (1s) or (21) approximations, but it transforms the (22)
approximation (i.e. the solution (9:35) to (9-38)) to

(22) F—r* r* )
gh=—1r*" X(€) dE+ %—%Sinzﬁ*—i%sin“ﬁ*)f X (% —p) dy, |
(22) r*

g% = r*?({sin? 0*+-§1ﬁsin40*)f 1 X(t* —n) dy,

(22)

g = —r*2sin2 0% (F5sin? 0* 4 gsint 6%) f 7 X(t* —n) dy,
(22) o

g = —1r*7! X(£) dE—-rgfw n 1 X(#* —n) dy

(& sin? 0% 4 gk sint 0%) r* f w 2X(¢* —7q) dy,
(22)

gh = (§+4sin?0%) r*sin0* coso* [ y-1X(1x ) dy,

(22) r*
gt = (Fysin2 0%+ gosint0%) [ g7 1X () dy

+(10-4)

(b —bsin?0* —gsint0%) % [ y2x(er—y) ay,

(22) ~
gh = G5+ ysin?0%) 1 sin 0% cos 0% [ 9 1X(t% ) dy

+ (& + g sin2 6%) r*zsmﬁ* cosﬁ*f 772 X(¢ ——77) dz.

J
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In obtaining these expressions it is necessary to differentiate some of the integrals in (10-3)
through the integral sign. All these except (10-2) are uniformly convergent for —oo <#* <c0;
I shall assume that even in the case of (10-2) differentiation through the sign of integration
is permissible for all £*.

. (22) . . . .
It will be noted that the g in (10-4) have non-diagonal form, like the metric (5-1).
Before considering (10-4) in detail let us study the integrals occurring in it. Those of type
(10-1) have already been dealt with, and we now turn to

[Crmxae—pan, [ grexe—npan (105)

Remembering that X(£) -0 when £—--00 at least as rapidly as {72, we easily see that
(10-5) exist when #* is finite (r*>0), and then tend to zero as r* —co at least as rapidly as
r¥-2, As t* —-4-00 the expressions (10-5) tend to zero at least as rapidly as #*~! and £*-2,
respectively, as may be proved rigorously or seen qualitatively by thinking of X(¢* —7) as
a d-function. If #* and r* tend to infinity in such a way that #* —r* - const. then (10-5)
tend to zero by a similar argument.

It follows that the metric (10-4) has no singularity for 7*>0. Moreover, owing to the
fact that the derivatives of (10-5) tend to zero as r* and #* tend to infinity at least as rapidly
as the expressions themselves, one can check that (10-4) tends to flatness as r* 00, £* —4-c0.
(This is clearer on transforming (10-4) to Cartesian co-ordinates, because the contributions
to the Cartesian metric from g%, and g¥ in (10-4) are divided by 7*2, and those from gf, and
g¥ by r*.) Therefore, (10-4) represents an approximate space-time which is non-singular (except
at r* = 0) and which tends to flatness as t* and r* tend to infinity.

Since the main results of this work will follow from the metric (10-4) it will perhaps be
well to consider a little further the transformation by which we got it. Since it contains the
integral (10-2) the transformation (10-3) is singular at #* = 400, and the question arises
whether it is permissible to remove singularities in the metric by transformations which
are themselves singular in the same region. I think it would commonly be agreed that,
until a proper definition of a physical singularity in the theory of relativity is given, this
procedure is unavoidable: it is certainly used and the results obtained from it are con-
sidered significant, as in the case of Lemaitre’s work on the Schwarzschild singularity at
r = 2m. In any case, the metric (10-4) is an approximate solution of the field equations in
a sense which could be made precise (as was done for (9-35) to (9-38)), and the manner in
which it is obtained is largely irrelevant. Unless one is prepared to say that a non-singular
solution has to be examined with a view to inducing singularities in it by co-ordinate trans-
formations (which at the present stage of our knowledge would seem like looking for trouble),
the fact that one obtains, in one way or another, a non-singular solution should be sufficient.

Of course it may be that the co-ordinate system needed to ensure regularity of the (22)
approximation will make the higher approximations singular. This could only be decided
by pushing the solution to a higher stage of approximation: but the objection here seems no
stronger than that which can be made against any approximation method of this type—
that one cannot be sure that it will be possible to carry on with it indefinitely.

With this brief justification of the use of the transformation (10-3), I shall now proceed
with the examination of the solution in the form (10-4). This examination will lead to results
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so plausible that they themselves offer some pragmatic justification for the procedure
adopted.

In the first place it will be seen that the transformation (10-3) removes the arbitrary
constant a,, which may therefore be taken to have no physical significance. We are interested
in the (22) approximation with )

r finite, ¢->400,
and we are concerned only with terms in the metric which are of order r~! and non-zero at
t = 4-00; we therefore ignore expressions (10-5). The terms of interest in (10-4) which then
remain are (omitting the asterisks):

(22) t—r

gn=—15" X(£) dg,

- 00 1 .
(22) ( 0 6)

t—r
gu= —15"' | X(§)dE

—00

These formulae correspond to an approximate Schwarzschild solution (terms of order r—2
being ignored) in which the mass is AM, given by

i-r
AM = Em?a* X(&) dé.
For fixed r this depends on the time, and for ¢ = 400 it becomes, using (9-26) and integrating
by parts as in (9-28), m2at (=
—AM =" f [ (8)]2 de. (107)

Thus the solution of the (22) approximation shows that the gravitational mass of the system at ¢ = +o0
15 less than that at t = —oo by the amount (10-7).

The interpretation of this result is that the sources lose mass because energy is lost as
gravitational waves. This latter energy may be calculated by using the energy pseudo-
tensor t,. If Cartesian co-ordinates are used, the (22) approximation to t, is made up
entirely of terms from the (1s) approximations (s = 0,1, 2), which shows that the energy
lost comes from the (11) and (12) waves. It turns out (see next paragraph) that the energy
lost is precisely equal to (10-7), so that the loss of gravitational mass is exactly accounted for by
the energy transmitted as gravitational waves.

If we substitute for 4(f) from (7-13) into (10-7) we find

2 [~ (d3])?

s =z [ (]

where Iis the moment of inertia of the two particles about the plane z = 0. This is essentially

the standard formula (calculated by using 1) for the loss of energy due to the waves
(Landau & Lifshitz 1951, p. 331).

The result (10-8) does not tell us whether the loss in mass occurs in the particles or in the
machine which drives them. In fact, the latter has not appeared in the calculations though
‘we could have added a term corresponding to its mass in the (10) approximation; if we had
done so the formula (10-8) would have been unaltered. Another interesting question which
is not clear from (10-8) is whether the loss of mass would occur at all in the absence of a
machine: that is to say, if the motion is purely gravitational. This will be discussed in §12.

dr, (10-8)
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11. THE SOURCES OF THE FIELDT

If one takes any approximate solution of (1-1), one can, by substituting it into the equations
Ri—30iR = —8n T}, (11-1)

obtain an expression for the energy tensor, 73, which corresponds to it. For an exact
solution 77 vanishes at all non-singular points; at singularities 77 appears usually to be
singular, and it is sometimes written in terms of d-functions.

For an inexact solution 77 given by (11-1) will generally not be zero anywhere at all.
A distribution of matter and stresses will appear throughout space-time, and one may
regard this distribution, together with the singularities in 77, as representing the ‘sources’
of the approximate solution. Of course, in the actual physical situation to which the
solution is supposed to approximate, the sources will be different; in particular the
continuous distribution will not be present. The difference will be a measure of the agree-
ment between the approximate solution and the exact solution which one would really
like to get.

If one is correctly approximating to the exact solution with the desired sources, one may
hope that by repeated application of the method one could approach consistently nearer to
the exact solution: this would show up by the continuous part of 77} becoming progressively
smaller away from the singularities. One would also expect the value of 7} near the
singularities to approximate in some way to the (singular) values which it takes in the
corresponding exact solution; however, as we do not properly understand the mathe-
matical character of the singularities of equations (1-1), the information to be gained in
this way is limited.

As an illustration we may take the following approximation to the Schwarzschild

solution: ds? = — (1 +2mfr) A — 26— r*sin? 0 dg?+ (1 —2m]r) 2. (11-2)

Using (11-1) we find for the non-zero components of 77

4m? 4m2\ 1
2 4 2\ —2
[ 1= I
-2
87rT4-—4—7Zl(1 +27m)

We notice that these values of T} refer to a tenuous static distribution of matter and stresses
throughout space-time, and to singularities at 7 = 0 and r = 2m. (The metric (11-2) has
the wrong signature for r<<2m.) We could guess from this that (11-2) approximates to the
exact solution for a static, spherically symmetric concentration of matter near the origin,
surrounded by empty space. '

It may be that the approximate solution differs in some essential way from the desired
exact solution. A likely cause of this is that the sources of the two solutions are significantly
different, and it is possible that an examination of 77} for the approximate solution may
reveal the discrepancy.

T I am grateful to a Referee whose suggestions led to the introduction of this section.
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As an example of this corrective use of 77 let us take the linear approximation to the
non-static field with axial symmetry, considered in § 7. Suppose that we represent the field

of the two moving particles by

(1
g = —1—ma?4,

J— 2(1 é_lBl))
8oz = — 7\l +ma‘b}, (11-4)
) e s gl))
g33 = —7r?sin 0(1 +ma®C),

(11)
844 = 1+ma?D,

(1D
where 4, etc., are given by (7-11). By a calculation we find

Tl = = meat[r2X(t—7) sind 0+ O(~%)] + O(m*ac).

Integrating 74 over a sphere of radius 7, we find for the rate at which matter flows out
Fm2atX(t—r)+ ...

We may integrate this with respect to ¢ between the limits —oo and oo to obtain for the
total matter which flows info an infinite sphere

m2at [

30 ). [#'(#)]? d¢+ O(m3aS). (11-5)
This means that in order to maintain the field (11:4) we should have to infuse an amount
(11-5) of matter. Thus even without considering the energy pseudo-tensor we conclude that
our approximate solution (11-4) cannot be considered at its face-value as representing two
moving particles of constant mass: if the mass is to remain constant we must introduce more
matter. Since in the actual physical system under investigation more matter is certainly
not introduced, this is another way of saying that energy is lost as radiation, and in the
exact solution to which we are approximating the masses must diminish. This is exactly
the result found in §10 by taking the solution to a higher degree of approximation. Thus
the correct interpretation, as will be verified below, is that the masses diminish because
energy is carried away by gravitational waves.

Let us try to use this method to study the approximate solution obtained in this paper.

Neglecting the terms in ma*, which do not contribute to the main results of § 10, we may take

this as Y &
gy = — 1 —4mr-'—ma?’A+m?a*g,,,
(22)
Gog = —r2(1 —l—mazB ) +m2atgy,,
22)
g33 = —712sin? 9(1 —|—ma2C) +mPatgss,
(11) (22)
Gaa = l—dmr—14 matD +mPatgyy,
) (22) .
gik =m a4g,~k (Z F k))

~

(11-6)

an - ap (22)
where 4, ..., D are given by (7-11), and g, are given by (10-4). Unfortunately, the expres-

sions for 77} are extremely complicated and to get them into a surveyable form it is almost
essential to expand in powers of m and a? as in the original treatment.

33 Vor. 251. A.
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Two points can be made from the general form of the 77 calculated from (11-6), before
expansion. First, it is not hard to show that if /400 and r<|¢|, Tf tends to the values

(11-3), but with 2m in place of m as t->—o0,

and 2m—AM in place of m as ¢—>+o00.

This confirms that the sources of the approximate solution lose mass, as stated in §10.
Secondly, one can show that for no value of ¢ is there a conical two-dimensional surface
§ = const. on which T7} is singular. This includes the degenerate cases ¢ = 0 and 6 =,
and precludes the possibility that energy or matter is piped in or out along the axis of
symmetry. |

To make further use of 77 it seems to be necessary to expand it in powers of m and a2.
For all except the lowest approximations the calculations become prohibitively heavy if

. (s),
one tries to go beyond the term in r~2. The following are the 77 for p,s<2:

(0) (10) (1)
Ti=Ti=T{=0; ;
(20)
Ti=0();
@1
Ti=0(%);
@y . ‘
8n T3 = 2m2a’h"r~2sin? 0+ O(r~3),
@1
8m 13 = —2m?a®h"r-2sin? 0+ O(r=3
except (215)* +0(r3), L au
8w T21 = 4m2a2h’7‘_2 sin COS&"’{"O(?’ES),
@y
8 T4 = — 4m2a2h'r-2sin 0 cos 0+ O(r-3);
22)
7} = o)
22)
1 — 192408 hr—2 o3 _ 9 3
except 87’(:22;3_ ama*h'hr=?sin 6 cos (1 —9 cos*0) 4+ O(r~3),
871§ = tm?a*hh'r2sin 0 cos 6(1 —9 cos?f) + O(r~3).

Though this information is meagre, a few conclusions can be drawn from it. The vanishing

(1) . . . . .. .
of T} for (r>0) shows that in the (11) approximation there is no distributed energy; this
is reassuring because it means that in this approximation, which was the essential starting
point for the investigation, the source may be taken simply as the quadrupole corresponding

(20)
to the two particles. The 77 refer to a Schwarzschild solution of mass 2m, as in (11-3).
The main point to be made from the rest of (11-7) is that the integrals

o » (21) 0 22)
f at f 71448 and f d f Ti4ds,
—c0 S —o0 S

where §'is an infinite sphere, centre the origin, are zero. Thus the approximate metric (11-6),
unlike (11-4), does not need a permanent infusion of matter to maintain it, at any rate as
far as the (22) approximation. The reason is that in (11-6) the energy lost as waves is

(22)
accounted for by the diminishing mass of the mechanical system, and 77% is not called upon
to make up any defliciency. This shows that (11-6) is a more satisfactory solution than (11-4),
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because in the physical system to which we are approximating there is certainly not the
flux of matter which 74 represents.
It is likely that if we used (11-6) to calculate

0 (22)
j d f T144s
—0 S

we should find a permanent flux of matter through the infinite sphere. However, following
our experience with the two solutions (11-4) and (11-6) we should expect to be able to add
to (11-6) certain terms of order m*a® which would give a new solution without permanent
flux.

Thus, even though it has not been possible to proceed very far with thé calculations, we
can say that consideration of 77 for the approximate solution (11-6) gives us confidence that
we are on the right track; at any rate there is no indication that the sources of the approxi-
mate solution are incompatible with those of our physical model.

12. TYPES OF MOTION OF THE SOURCES

One matter concerning the motion of the sources needs to be made clear at this point.
The approximation method of E. I. & H. yields equations of motion of the particles present.
This happens because care is taken to introduce no singularities other than poles corre-
sponding to point masses; this ensures that the motion is purely gravitational and as such
it is determined by the field equations.

The procedure here is different. Singularities corresponding to point masses were
introduced into the (11) approximation, but no steps were taken to eliminate singularities
of other types in that approximation, or in the higher ones. The method of multipole
expansion which we have used is not a convenient one for studying singularities. If the
motion of the particles is arbitrary (as we have supposed) singularities, such as the stress
singularity of Bach & Weyl (1922), must be present, since these are necessary to prevent the
particles from executing a purely gravitational motion. They correspond to the springs, etc.,
which run the motion. If we had an exact solution corresponding to our problem we should
expect the nature of the singularities to become clear, as it is in the solution of Bach & Weyl
for two particles at rest. Itis the presence of the singularities, though hidden by the method
of approximation, which allows us to suppose the motion to be arbitrary.

The restrictions on the motion (i.e. on f{#)) given in § 8 were imposed so that the integrals
in the solution (e.g. (10-1)) converged. If one takes purely sinusoidal motion,

S =sinwt,

the integral (10-1) tends to infinity with ¢ (like ). The obvious explanation of this is that in
the course of such motion an infinite amount of energy is lost.

It will be noted that the restrictions of § 8 on f(¢) require it to tend to limits as ¢—>+-00.
They do not require, however, that these limits shall be equal. The system loses mass
whether or not the particles return to their starting point.

Simple examples of functions satisfying the conditions have already been given in (8:1)
and (8:2). One can, of course, impose vibrations on these; for example, one could take

instead of (8-1), f(t) = 2+ tanh ot sin w*¢.

33-2
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Such a function is slightly more realistic as a model of a vibrating system, but it still has
the disadvantage that the motion takes an infinite time.

As was explained in § 8, the experiment in which the two particles execute some motion
between finite times £, and ¢, and are at rest before and afterwards poses, in general, an
initial (and final) value problem, the solution of which would be difficult using the method
of this paper. I am indebted to Professor H. Bondi for the following suggestion which
remedies this situation to a considerable extent. Consider the function

St) =0 (—o0<t<0), ‘
St) = exp{—k 17 2—k,(t—1)"% (0<t<1), (ky,£,>0), (12-1)
fiH) =0 (1<it<o0).

This function satisfies all the requirements of § 8; in particular it has derivatives of all orders
at¢ = 0and ¢ = 1. It represents a motion which takes place in a finite time, and ifit is made
vibratory by multiplying it by a sinusoidal factor it forms a good model for the experiment
referred to in §8. Our conclusions of § 10 will therefore apply to this experiment: mass
would be lost in an amount equal to the energy radiated.

The interesting feature of f(¢) in (12-1) is the smooth transition from rest to motion at
¢t = 0, and from motion to rest at = 1. Let us now suppose that, by the use of functions of
this or of another type, we can arrange a smooth transition between rest and an arbitrary
motion which starts from the position of rest. Suppose, for example, that we can arrange
smooth transitions at ¢ = 0 and ¢ = ¢, for the functions

Si)) =0 (—o0<1<0),
Jo()) = ¢(0)  (0<i<ty), (12-2)
S(t) =¢(t)  (Hhi<i<o0),

where ¢, is constant, #(0) = 0 and where ¢(f) has derivatives of all orders for 0<<¢<4;.
This corresponds to motion according to ¢(¢) for 0<<¢<(¢;, and rest before and afterwards,
and as a result of our assumption about the smooth transitions, the conclusions of § 10 will
apply.

For the motion (12-2) we have A(f) = —4d?{[4(¢)]%}/d#? for 0<¢<t;, and A(¢) = 0 before
and after. The loss of mass in this case is, from (10-7),

8m2at (43 AL
| fgsteor)
neglecting the effect on AM of the short transition periods at ¢ = 0 and ¢ = ¢,. For this loss
to be zero we must have KE
SBOE =0

of which the solution is B(t) = (k22 +kyt+kg)?, (12-3)
k,, k, and k5 being arbitrary constants. Thus us the most general rectilinear motion for which no
energy is lost, at any rate up to the (22) approximation.

We turn now to the question whether energy is lost when the particles move freely under
their own gravitation for 0<<#<(#;. It will be noted that motion under the inverse square
law of attraction, calculated by ordinary Newtonian dynamics, is not included in (12-3).
One might, therefore, be tempted to conclude that energy is lost under gravitational
motion, but this would be unjustified for the following reason.

—AM =
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To obtain the solution for free motion we must evidently ensure that there are no non-
gravitational forces acting on the particles; that is, that the stresses due to springs or other
machinery vanish. If in the ordinary linear approximation (corresponding to our (ls)
approximations) one treats the particles as -functions and arranges that the energy tensor
shall contain no stresses, then one can easily show that if the metric is flat at spatial infinity,
the particles must move with constant speeds in straight lines. This is really obvious without
calculation because in the linear approximation there is no interaction whatever between
the particles, and any agency which accelerates them must be a non-gravitational stress.
It follows that in the (1s) approximations what corresponds to free motion is simply un-
accelerated motion, and this s included in (12-3). We are therefore unable to choose any
function ¢(¢) which corresponds to free gravitational motion, and the present work gives
no indication whether mass is lost by freely gravitating particles.

To deal with free gravitational motion the method of this paper would need some
modification. The function f(#) would have to depend on m and ¢, and would not be arbi-
trary; it would, in fact, be determined by the condition that at each approximation step the
stresses must vanish. It is hard to see how this condition could be applied in practice

because one would need to pick out of ‘che(krgs,;C terms which become singular at » = 0 and
which correspond to the stresses along Oz. Even if this could be done for the (2s) approxi-
mations it would still be necessary to proceed at least to the (3s) approximations before terms
relating to loss of mass would appear.

13. FURTHER REMARKS ON THE METHOD OF APPROXIMATION

In § 7 we showed how to solve the linear approximations, that is, in our notation, the
(Ls) approximations. In §§8 to 12 we considered the non-linear, (22) approximation, and
from this obtained the result of main interest, that the energy lost from the (11) waves is
equal to the loss of gravitational mass which appears in the (22) approximation.

The earliest non-linear approximation is actually the (21) approximation, which may

be wri
e written q)lm((fé’l; ) Wlm((algli)k ,(}g()i)k)- - (181)

(21)
The actual equations have the form of (9-2) to (9-8) where 4, v, o and p now refer to g, -

an (10)
and P, @, ..., N are known functions of the g, and g;. A formal solution can be achieved

as described in appendix III.

It is not difficult to see that the(zgli;c obtained by solving (13-1) will contain no terms of
order 7~! which do not vanish at # = 4-co. The reason is that the ¥, in (13-1) contain no
terms which are quadratic in / and its derivatives. The fate of these W}, is in fact similar to
that of the terms containing derivatives of k£(¢—7) in the (22) approximation (see (9-25)),
which produced no terms of interest. Thus the (21) approximation yields no permanent
change in the mass of the system.

It will by now perhaps be clear that we should have achieved our main results if we had
adopted a simpler approximation method. If we had written

0 1 2
Gir = i T AGu + %G+ ... ] (13-2)
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with A = ma?, we should still have obtained the solution (10-6), which would have been

simply the ;ik. It seemed worth while to use the more complicated method in order to
show that combinations of terms from the (10) and (12) approximations do not contribute
to the change in mass in the (22) approximation. The use of (13-2) with A = ma?is certainly
unsatisfactory in that it omits the Schwarzschild terms (our (10) approximation). This

could be overcome by taking zik to be the Schwarzschild solution, but even if one does this
one still omits the (12) wave terms because these are the coefficients of ma* which does not
appear in the expansion. There is little doubt that (13-2) would be unsatisfactory also at
the non-linear approximations higher than (22).

Let us now examine the relative magnitudes of terms in the expansion (4-1). It will be
convenient to think of f(¢) as containing a parameter v, of dimensions ¢~!, which serves as
a ‘frequency’; then for f() one may have in mind, for example,

S(t) = sinwt (13-3)

remembering that this is strictly permissible only if the motion has a finite duration, and if
there are smooth transitions from motion to rest, and vice versa.

Re-introducing the velocity of light ¢, we find for the ratio of the magnitudes of the terms
in 7~ in the (1s41) and the (1s) waves

m(awfc)®*2+m(aw/c)® = v?/c?,

where v = aw is of the order of the maximum speed of the particles. Thus the magnitudes of

the terms in 7~! of the first approximations will diminish rapidly if the motion is slow. We

have concentrated attention mainly on the (11) wave—it is this which by carrying away

energy causes the reduction of mass (10-7)—and we see now that our result will be the

more accurate the slower the motion. ‘

To illustrate the comparison of the non-linear terms with the linear ones we may take
(22) an g (,,)3

3

2,4 s el
meaz gy ima gu*a

4

(22)
where g, is given by (10-6) and m is measured in units of length. The ratio m/a is bound to

be small for any real bodies.

The comparison of other terms can be made in a similar way. The result is that the series
(4-1) will converge the more rapidly the smaller the ratio v/c.

Similar conclusions apply if f(#) has a form different from (13-3) provided that it and
its derivatives with respect to wf do not become large. This can be arranged by taking ¢, in
(12-2) not too great.

14. CONCLUSION

The main conclusion of this paper is contained in § 10, where it was found that the (22)
approximation contains a term representing the loss of mass of 2 moving system equal to
the energy which is carried away by the spherical quadrupole waves of the (11) approxi-
mation. There seems no reason why these particular approximations should be in any way
exceptional, and it seems justifiable to suppose that an exact solution of (1-1) would give
a similar result.
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The work depends on certain assumptions about the motion of the particles. In the first
place (§2) these were assumed to be moving symmetrically about their mid-point; and
secondly, the function f{#) describing the motion was supposed to satisfy certain mathematical
conditions (§ 8). It seems certain that the relaxation of the first of these assumptions would
not alter the fact that mass is lost; in regard to the second, its main disadvantage, that it
requires motion to continue for an infinite time, can be overcome by using the exponential
expressions of § 12. Discontinuous motions, posing boundary-value problems to which the
present method is not well suited, need further study, but it would be surprising if dis-
continuities in f{#), at the start and finish of a motion which can go on for an arbitrarily long
time, were found to have any considerable effect.

A small class of motions does not involve loss of energy (up to the (22) approximation)
and these are given by (12-3). As was explained in § 12, it has not been possible to find out
whether energy is lost in free gravitational motion. Nor can one say from this work whether,
in the motions for which energy is lost, it is the particles themselves which lose mass, or the
machine which drives them.

The results of the paper depend on the choice of retarded potentials. This choice seems
the most plausible, but it is not dictated by the theory of relativity: or, at least, it is not
necessary if one approaches the problem with our approximation method. It is just possible
that an exact solution would relate the choice of potential to boundary conditions at infinity
and so remove the arbitrariness.

Perhaps the most important general conclusion to be drawn from this work is that gravi-
tational radiation has a real existence, and like other radiation, carries energy away from
the sources. As explained in the Introduction, this prediction of the linear approximation
to (1-1) had become doubtful in recent years, particularly because of the deductions made
from the approximation procedure of E.I. & H. If the results of this work are accepted it
should be possible to study the properties and effects of gravitational radiation with the
confidence that it represents a real phenomenon.

AprpPENDIX I. THE RETARDED-POTENTIAL SOLUTION

The aim here is to derive formulae (3:5), (3-9) and (3-10) starting from the expression
(8-3), in which the square bracket means that the quantity inside it is to be taken at time
t—r,/c. The derivation follows closely a similar one of Eddington (1924, p. 253).

Consider the fixed point P at time ¢ and the moving source 4 at time ¢—7 (figure 1).
Since the motion of 4 is prescribed, the distance 4P is given as a function of  —7

AP =1, = §(t—1).

(¢ here has, of course, nothing to do with the azimuthal angle of polar co-ordinates.) The
component of the velocity of 4 along AP is then

—dr/dt = —¢'(t—7). L1
Suppose that the wave emitted from 4 at time {—7 has at time ¢ reached a point  on AP,

dlet PQ =u; th
and let PQ = u; then U= o1 —1, = cT—(t—7), (I.2)
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and « is a function of 7 and vice versa. Differentiating (I.2) we have

dT dr

1=c L+ -
Using this, and (I.1), we have
m me dr d
= — =cm——O(t—71),
e, g du "atT)

where Q' =—1/¢.

To calculate the retarded potential we need @ to coincide with P; this is achieved by
putting u = 0; then m

d ‘
[rn—(vier)fe] ’”c{aa“’“")}u:o' (I.3)

We now use Lagrange’s theorem on implicit functions (Whittaker & Watson 1952,
p. 133). Write (I. 2) in the form
u 7

b—7 = (t»—zw—) —zg(t_")’

where the function g has been introduced from (8-4) and 7 is the fixed radius vector OP.
Then the theorem gives

O(t—r) = 0u)+ 3 (—1)" 30 (0 w) [g(w)T (1.4)
where w= t——i—t—g.

Substituting (I. 4) into (I. 3), and using the fact that d/dw = —¢d/du = 9/0¢, we obtain (3-5)
m n1 0" (g" .
rtverm 2 () man(5) &9
where 7, and g are to be calculated at time ¢—r/c.

We now use the binomial theorem to expand r, and g given by (2-1) and (3-4), in powers
of r~1. For example, we obtain

3 £3
8 (“fP1+ fP2+fl—r§iP3+...),

71

a2f? 272
& — Ll P, )+ L P+ P+ (BR3P +..,

in which f'is to be taken at time ¢—7/c. Using expressions such as these in (3+5), we can
collect the various terms together in the form of a series (3-7). This series is then added to
the corresponding one for the second particle, obtained in a similar way, and the result is
(3-8), with G, and G, given by (3-9) and (3:10).

ApprENnDIX II. THE FIELD EQUATIONS

The non-zero Christoffel symbols for the metric (5-8), to the approximation required,

are given below. The notation of (6-1) is used, and the sign E denotes summation for s over
(10)
the values 1 and 2. The expressions (7-1) and (7-2) for the gzk and g, have already been

X (10) (10) (100 (10)
inserted, so that 4, B, C and D do not appear below.
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(22) (ll)(ll) (12) (12)
TV, — —2mr 24+ }Sma® A4, +mat(3d, — 34 A4 — 21 4+ 212 4),

(22) (1) (1D
T, — 35ma® Ay +m2at(§4,— A A,— 21 4)),

(1D(1D (12)
T}, — $5ma® A, +m2at(3A,— 44 A, —2r1 A4,),
(Is)  (Ls) (1s)
Iy=—r+4am —}—Zmazs(rA —rB— %rZBl)
(22) (22) (22) andan 1D 11 (12) (12) (12)
it A—r B—1P B+ A B 1A B, —r A28 A+ 4B+ 2rB,),
(I1s) (1ls) (1s)
I}y = sin? 0{——r+4m+2ma2‘(rA—r C—13r? C,)
(22) (22 (22) (anqan (1D)(11) (11 (12) (12) (12)
et A—r C— 3 C -t A C bt A O\ —r A2 —8 A 140 2 C)),

5 @  (anap a2 2(12))
', = 2mr""—i~%2mastl—(~mza‘*(%D1 —3A4D,—2r'D,—2r24);

1) ap ap @
'Y = —$Zma®r=2 4,4+ 3m?a*\r 24, B—r"24,),

(1s) (22) ADAD
T2, — '+ 3Zma® B, +im?a*(B, — B B,),

22)  (1DAD)
I3, = %Zmazs B —l—gmza“(B B Bz)’

@2 apay
1'%, = QZmaZS B4 + %mza‘*( ),

4
(1s) (1s) (ls)
I'3; = sin? 0{——cot0+2ma2’[(B C ) cotfd—13C,
2 @2 @2 [apan ay (11 (11
el (B—C) cotd—1Co+(CBLB) coto+1B C, )},

(22) A AD
'}, = $2Zma?sr- 2D +3m2atr- (D2 BDz);
(Ls) (22)
T3, = r1+ 33ma2 Gy - m2a4(3C,— 1C C,

22  anan
3= cot6’—|—§2ma2~‘ C —l—m“’a"(%C’2 ic CZ),

ap 4(1@2) (111>(11>)
I3, = 1¥ma* C,+m2a*\3C,—3C C,);

@2  apan a»
't = %ZmazsA +m2a4(gA4 3D A4—|—2r‘1A4),

22  (anay a2 (12
'ty = 2mr- 2—|—§Zma2‘D —i—mza‘*(%D —3D Dl+2r‘1D1—27'2D),

22) (1D an (12)
TY, — 15ma?r? B+ m2a*(3r2 B, — 412D B, +2rB,),

(22) (11) (1 1)
T4, — 35ma® D+ meat(§D,— D D, +2-1D,),

@2 apan 12
[ =12 sm2¢9{12ma2~‘0 —}—mza‘*(lC4 D C'4+2r*lC4)},

@2  apan
Iy = %Zma’“D —i—m"’cz“(gD4 D 4+27“1D )

VoL. 251. A,
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(00) (10) (1D) (12) (22)
In the above, contributions from gy, gy, i g Zx have been included so that I is
complete in the following terms

(00) (10) (11) (12) (22)

To find the field equations we have to substitute }k into
R,=T¢ ,—Tg . +T51%, T4, = 0.

From (II.1) it follows that to our degree of approximation R;, will contain the following
terms 0 (10) (11 (12) (22)

(00
Each of the terms on the right of (II. 2) is to be put equal to zero. When this is done, R;; = 0

2
(10)
and R;; = 0 are satisfied identically, and both sets of R % = 0 (s = 1,2) give equations (7-3)
AU A (1g)
to (7-9) in which, as explained in the text, «, §, 7, and ¢ are used to denote fi, Bs, Cand D

The equations of the non-linear (22) approximation come from

(22)

and are (9-2) to (9-8), using the notation of (6-3). The right-hand sides of these equations
are given, up to terms in r~2, by (9-25), and to see how these have been obtained we shall

(22)
consider one particular member of (II.3), R;; = 0, in detail as an example. Using the
Christoffel symbols, one finds

(22) [(22 (22) (22) ((22) (22) (22
n=

(22) (22) (22)
2R, B+ Cy + Dy +2r- ) ]

B4+ C—4)+rAd,+ %4 cots) — 4,

I 2'}_43(221 v (IBZ) (12) (12)1) n 27"‘1((5)11 —(11444 I 4r-3 ((5) (151))]

[ ((11)(11) anan anan
+ )

anan apan an an
By +CCy+DDyy) —3( )

B, B,+C, C,+D, D,

1D 11 apnan  an Jayn

(4B + 4 C+ 4 D) +or1(A4 BB, EC)
anp an an anp  an 11 ap

+34, +D)

A4 B4— C4 4 + A44 D

apay _apap o apap o apap - apan anan

234, Cot 34, Dy— 34, Ay— 1A, B, — Aoy B)—r-24, Beotd].  (IL.4)
The terms in the first square bracket on the right of (II. 4) give the left-hand side of (9-2),

and the remainder constitute P on the right-hand side. Of these we need, as explained in

an - a»
§9, only those which are of order r~2. The appropriate values of 4, ..., 4, ..., to be inserted

in the second and third square brackets of (II.4) are therefore those given by (7-12) and

. ) Lan  a» .
(7-14) because it is clear that terms of order =2 and higher in 4, ..., 4, ..., will not con-

tribute to the term in 7=2 in P. Inserting the solutions (7-12) and (7:14) we find that the
only term of order r~2in P is
r~2Xsintd,

in agreement with (9-25). The remaining equations (9-3) to (9-8) are obtained similarly.
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AppEnDIX III. SOLUTION OF THE APPROXIMATE FIELD EQUATIONS

The object here is to find solutions of the (1s5) and (22) approximations. The equations
of the (22) approximation are (9-2) to (9-8), and indeed the equations of any approximation
step whatever can be written as (9-2) to (9-8), with appropriate values for P, Q, ..., N,
which are always known from the previous approximations. We shall therefore give a formal
solution of (9-2) to (9-8); the solution can then be used for the (1s) approximations by
putting P, Q, ..., N all zero.

Integrating (9-7) and (9-8) we have

b1+, = 1Y (2U—v—0) +u(r, 6) +fMdt, (II1.1)

Yip 40y = cOtO(v—0) +o(r, 0) + f Nd, (I11. 2)
where u and v are functions of integration. Substituting (III.2) into (9-6) and integrating

v =+ [Lao— [{[Maddo— [masruiry, L

where w is a function of integration.
If we now substitute (III. 1) and (III. 3) into (9-2) we get

Hay 2 g 1 (prgg + iy COLO) — fhyy
= P [(Lirr1L) do— [(M, 41 01) de-+ [{ [+ 1) def ao
4—](011—{—7‘“101) df— (uy; +7r"1u) — (w, +7"'w). (9-9)

This is the inhomogeneous wave equation, and a formal solution of it can be given in terms
of retarded potentials in the usual way.

Equations (III.1), (III.2) and (III.3) enable us to write down expressions for v, ¢
and p in terms of . From (III. 3) we find

p =,u+27’f7"’ ﬂdr+rf{fr11:da-f[fr-lz\fldz dﬂ—fr”lvld«9+r“‘w} dr476(6,4), (IIL4)

where b is another function of integration.
Equation (III. 1) gives on integration with respect to r

V4o = 2r‘1f,udr+r*1fmdr+r‘1f|:f rMdt |dr+r-1d(0,1), (IT1. 5)

where d is yet another function of integration. Finally, we eliminate » between (III.2)
and (III. 5) ; this gives

0, = —,uz+cot¢9{—20+2r‘lj,udr+r*1f|:jert dr+r“1frudr—|—r‘1d}-1—v+det,
whence we find
o = — pu-+cosec? ﬁﬂ sinﬁ»cos0[2,u—|—2r‘1f,udr+r‘1f(f ert) dr—i—r“‘frudr—f—r‘ldj} dé
+ cosec? 0f vsin? 0df+¢(r, t) cosec? § -+ cosec? § ﬂ: sin? 6 jN dz (dd, (IT1. 6)

¢ being a final function of integration.
342
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The function v may now be obtained from (III. 5) and (III. 6) and is

V= ﬂ+2r‘1fﬂdr—i—r‘1frudr+r*1f(erdt) dr-+r-1d

~coseczﬁf{ sin @ cosﬂ[2,u+2r‘1f,udr+r‘1f(f ert) dr—i—r‘lj rudr—l—r"ld]} dé

—coseczﬂfsinzﬁ[H—J‘th df— g cosec?d. (IT1.7)

The complete solution of any given approximation step is made up of , obtained from
(9-9), and the values of v, o and p, obtained from (III.7), (III. 6) and (III. 4). The solution
contains six functions of integration, u(r, 0), v(r,8),w(r, ), b(0,¢),d(0, ) and ¢(r, ¢). The field
equations may impose certain relations between these functions, and it is necessary to
verify that a solution using them actually satisfies (9-2) to (9-8).

For the (1s5) approximations (§ 7) the foregoing work applies if we put

p=a, v=4 o=y, p=4,
P=Q=R=8S=L=M=N=0.

The cquationé determining the solution then become
a2ty + 772 (g +ay cot ) — oy, = f(v11 +r~1,) df— (u; +7"'u) — (w, +7r"w). (7-10)
0= oz—i—2rfr“2(xdr—rﬂ:fr”lvldﬁ~r“1w] dr+rb, (I11. 8)
f= a+2r“1fadr+r“ljrudr—}—r‘ld——coseczﬁfvsinz0d0—qcosecZI9
«—cosec%?f{ sind cos6[2a—l—2r‘1focdr—i—r‘lfrudr-}—r‘ld]} dé, (ITI1.9)
y = ——oc+cosec2vasin2¢9d¢9+qcoseczﬂ

+cosec? Hf{ sinf cosd [2a+2r“lf ocdr—i—r”lf mdr—}—r'ld:l} d¢. (III.10)

To find the solution of the (11) approximation we first take a to be equal to —8G, (see
below), where G, is given by (3-9) (with ¢ = 1). This satisfies (7-10) with u =v =w = 0.

Then we substitute this value of « into (III.8), (III.9) and (III.10), carry out partial

apan A
integrations and simplify; this leads to the expressions for B, C and D in (7-11), the other

functions of integration being chosen so that the integrals remaining after partial integration
have the limits shown. One may check by direct substitution that the set (7-11) satisfies the
field equations (7-3) to (7-9). In the course of this verification it is necessary to differentiate
the integrals in (7-11) with respect to ¢ through the sign of integration. This is in order
because, as is apparent from (9-11), the integrals are uniformly convergent for all finite
values of ¢, if r> 0. :
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In the full (12) approximation we should take & = —6G, (see below), G, being given by
(3-10) (with ¢ = 1). However, we need only terms in r~! in the solution of the (12) approxi-
mation, and it is sufficient to take

¢ = =6 f) by + FoPo 5P
=—1rH(fH" costd.
Substituting this into (III.8), (IIL.9) and (III.10), and taking ¢ = 7%7~1(/*)¥, we find

the solution (7-14). By direct substitution this set of expressions satisfies the field equations
(7-3) to (7-9) to order 1.

An explanation will now be given of the factor —8 in @ = —8G,. The procedure will be
to show that the equations Ry —1g, R — —8nT}, (IIL. 11)

where T, is the energy tensor, have an approximate solution which, when the sources are
two symmetrically oscillating particles of mass m and separation 2af(f), is the same as (7-12)
provided that one takes (7-13) for /4. This amounts to the above choice for «.

Let us write
Gir = €%+ Vies
where ¢, takes the value —1 when i = 1,2,3 and +1 when ¢ = 4, and where the y,, are
small. Introduce, as usual in the weak field theory,

Vi = Y — 50075 (I1I.12)
where ¢Vii = —Yn—Y2a V33T V4
and choose co-ordinates so that ¥k =0 (II1.13)
kVik, &k = V- ' )
Then (III. 11) reduces to 6,7k . = —161T, (IT1. 14)
alik,aa — ik* :

Taking the divergence of (III. 14) and using (III. 13) we find that 7}, must satisfy
e Ty, = 0.

We now use a standard procedure on this equation (Landau & Lifshitz 1951, p. 329),
and derive

1 02
fﬂ‘ﬂdV:émfﬂ4xaxﬁdV (0,6 =1,2,3), (I11.15)

where the integrals are to be taken over all space.
Integrating (II1.14) in terms of retarded potentials and supposing that the sources are
located within a region small compared with the distance 7 of the field-point, we find

ﬁﬂ:_%f[];ﬂ]dlf, (I11.16)

where the square brackets mean that 7, is to be calculated at the time ¢—7 (¢ = 1). From
(IT1.15) and (III. 16) we have

% 2 92 av
yuﬂ = ’“;—aﬁj‘pxaxﬂ ’ (III 17)

where p is the mass density, calculated at the retarded time. Landau & Lifshitz (1951,
p. 330) give this formula, but with the wrong sign.
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In our problem the particles are located on the z-axis and the integral in (III.17) is /,
the moment of inertia about z = 0, when a = § = 8; for any other pair of values of @ and §
it vanishes. Therefore

v =2 2 l(i—)
BT ror )

The remaining y% are found from (III. 13) and are (up to order r~1)

222+ . 2z%

Vi = “;?Ia V34 = ﬁl,

where + means d/dt. )

We now reinstate the y;, by (IIL 12), and then transform the resulting metric to polar
co-ordinates. The solution in polar co-ordinates contains non-zero coefficients g5, g145 2245
but by means of a transformation of type (5-2) it can be brought into the form (7-12),
provided that .
ma2h = —21,

which is equivalent to (7-13), and which requires

o4

Il

(11)
A == _SGzo

As a further check on the factor —8 we may consider the case when fis constant, so that
we find from (7-11)

(an
ma*D = —4ma?f 3P,

This is the correct form for(B)because in the static case g,, represents the Newtonian potential
g =1-2V,
and the term in V which involves the moment of inertia of the particles is
r=3IP, = 2ma*f?r—3P,.

For the (12) approximation we take « = —6G,. In this case it is not so easy to derive the
factor from approximate solutions of (III.11), and it was obtained instead by the second
method of comparing the corresponding static solution with the Newtonian potential.
This factor is in any case less important as the (12) solution does not contribute to the loss
of mass of the system derived in §§9 and 10.
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